When the Group Matters A Game-Theoretic Analysis of Empathy, Team Reasoning, and Social Ties

E. Lorini¹ F. Moisan¹

¹Institut de Recherche en Informatique de Toulouse (IRIT)

IRIT, February 2013

1/39

Problems of Co-operation: Prisoner's Dilemma

- 2 suspects (Alice and Bob) arrested for a crime
- Prisoners isolated from each other
- Individual choice to betray the other (D) or stay silent (C)

Alice
$$\begin{array}{c} C & D \\ C & (-2, -2)(-10, 0) \\ D & (0, -10)(-5, -5) \end{array}$$

What should each prisoner do?

• \Rightarrow they should betray each other (choose *D*)!

• \Rightarrow In real-life: 30-40% of people choose C!

Problems of Co-operation: Prisoner's Dilemma

- 2 suspects (Alice and Bob) arrested for a crime
- Prisoners isolated from each other
- Individual choice to betray the other (D) or stay silent (C)

Alice
$$\begin{array}{c} C & D \\ C & (-2, -2)(-10, 0) \\ D & (0, -10)(-5, -5) \end{array}$$

- What should each prisoner do?
 - \Rightarrow they should betray each other (choose *D*)!
 - \Rightarrow In real-life: 30-40% of people choose C!

Problems of Co-operation: Prisoner's Dilemma

- 2 suspects (Alice and Bob) arrested for a crime
- Prisoners isolated from each other
- Individual choice to betray the other (D) or stay silent (C)

Alice
$$\begin{array}{c} C & D \\ C & (-2, -2)(-10, 0) \\ D & (0, -10)(-5, -5) \end{array}$$

- What should each prisoner do?
 - \Rightarrow they should betray each other (choose *D*)!
 - \Rightarrow In real-life: 30-40% of people choose C!

Problems of Co-operation: Hi-Lo matching game

- Alice and Bob have to paint a room together
- Each individual is responsible to buy a tin of paint
- Individual choice to buy blue color paint (B) or green color paint (G)

What should each individual do?

● ⇒ No unique rational solution!

• \Rightarrow Counter-intuitive!

Problems of Co-operation: Hi-Lo matching game

- Alice and Bob have to paint a room together
- Each individual is responsible to buy a tin of paint
- Individual choice to buy blue color paint (B) or green color paint (G)

- What should each individual do?
 - \Rightarrow No unique rational solution!
 - \Rightarrow Counter-intuitive!

Formalizing social interactions

Definition (Standard Strategic Game)

- $G = \langle Agt, \{S_i | i \in Agt\}, \{U_i | i \in Agt\} \rangle$ where:
 - $Agt = \{1, \ldots, n\}$ is the set of agents;
 - S_i defines the set of strategies for agent i;
 - *U_i* : ∏_{*i*∈Agt} S_{*i*} → ℝ is a total payoff function mapping every strategy profile to some real number for some agent *i*.

Theories of social (other-regarding) preferences

e.g., A model of fairness [Charness & Rabin,2002]:

$$U_i^{\mathsf{F}}(s) = (1 - \lambda) \cdot U_i(s) + \lambda \cdot SW_i(s)$$

where $\lambda \in [0, 1]$ and $SW_i(s)$ defines the social welfare function as follows:

$$\mathsf{SW}_i(s) = \delta \cdot \min_{j \in \mathsf{Agt}} U_j(s) + (1 - \delta) \cdot \sum_{j \in \mathsf{Agt}} U_j(s)$$

where $\delta \in [0, 1]$.

- ⇒ Can predict cooperation in Prisoner's Dilemma game!
- \Rightarrow Remains indecisive in Hi-Lo game!

 \Rightarrow No existing valid theory based on social preferences!

・ロト ・四ト ・ヨト・

Theories of social (other-regarding) preferences

e.g., A model of fairness [Charness & Rabin,2002]:

$$U_i^{\mathsf{F}}(s) = (1 - \lambda) \cdot U_i(s) + \lambda \cdot SW_i(s)$$

where $\lambda \in [0, 1]$ and $SW_i(s)$ defines the social welfare function as follows:

$$\mathsf{SW}_i(s) = \delta \cdot \min_{j \in \mathsf{Agt}} U_j(s) + (1-\delta) \cdot \sum_{j \in \mathsf{Agt}} U_j(s)$$

where $\delta \in [0, 1]$.

- ⇒ Can predict cooperation in Prisoner's Dilemma game!
- \Rightarrow Remains indecisive in Hi-Lo game!
- \Rightarrow No existing valid theory based on social preferences!

Definition Game Model Solution Concept Remarks & Limitations

Outline

Team Reasoning

3 Social Ties

Conclusion

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ♪ ○ Q () 6/39 mpathetic Preferences Definition Team Reasoning Game Model Social Ties Solution Concept Conclusion Remarks & Limitati

Defining empathy

Many definitions!

- ⇒ Here: economic concept [Binmore,1994,2005]
- Empathy
 combining my own preferences with my preferences when imagining myself to be in another agent's position
 - ⇒ I must consider the other's preferences!
 - *≠* Golden Rule: "One should treat others as one would like
 others to treat oneself"
 - ⇒ I must separate my preferences from the other's (≠ sympathy)
- How to define empathetic preferences?
 - \Rightarrow behind the *veil of ignorance* [Rawls, 1971]
 - \Rightarrow while ignoring one's personal identity

mpathetic Preferences Definition Team Reasoning Game Model Social Ties Solution Concept Conclusion Remarks & Limitatio

Defining empathy

- Many definitions!
 - ⇒ Here: economic concept [Binmore,1994,2005]
- Empathy
 combining my own preferences with my preferences when imagining myself to be in another agent's position
 - \Rightarrow I must consider the other's preferences!
 - ≠ Golden Rule: "One should treat others as one would like others to treat oneself"
 - ⇒ I must separate my preferences from the other's (≠ sympathy)
- How to define empathetic preferences?
 - \Rightarrow behind the *veil of ignorance* [Rawls, 1971]
 - \Rightarrow while ignoring one's personal identity

mpathetic Preferences Definition Team Reasoning Game Model Social Ties Solution Concept Conclusion Remarks & Limitatio

Defining empathy

- Many definitions!
 - ⇒ Here: economic concept [Binmore,1994,2005]
- Empathy
 combining my own preferences with my preferences when imagining myself to be in another agent's position
 - \Rightarrow I must consider the other's preferences!
 - ≠ Golden Rule: "One should treat others as one would like others to treat oneself"
 - \Rightarrow I must separate my preferences from the other's (\neq sympathy)
- How to define empathetic preferences?
 - ⇒ behind the veil of ignorance [Rawls,1971]
 - \Rightarrow while ignoring one's personal identity

mpathetic Preferences Definition Team Reasoning Game Model Social Ties Solution Concept Conclusion Remarks & Limitations

Interpersonal Comparison of Utility

Let *x* = "playing squash" and *y* = "playing tennis":

• Does one prefer (1) playing squash while being Alice or (2) playing tennis while being Bob?

• (1)>(2) if one is indifferent for being either Alice or Bob

• (1)<(2) if one always prefers to be Bob

mpathetic Preferences Definition Team Reasoning Game Model Social Ties Solution Concept Conclusion Remarks & Limitations

Interpersonal Comparison of Utility

Let *x* = "playing squash" and *y* = "playing tennis":

 Does one prefer (1) playing squash while being Alice or (2) playing tennis while being Bob?

- (1)>(2) if one is indifferent for being either Alice or Bob
- (1)<(2) if one always prefers to be Bob

Definition Game Model Solution Concept Remarks & Limitations

Modeling empathetic preferences

Definition (Game with Empathetic Preferences)

 $EM = \langle Agt, \{S_i | i \in Agt\}, \{U_i | i \in Agt\}, \{U_{i,i}^E | i, j \in Agt\} \rangle$ where:

- ⟨Agt, {S_i|i ∈ Agt}, {U_i|i ∈ Agt}⟩ is a standard strategic game;
- *U*^E_{i,j} : S → ℝ is a total function defining agent *i*'s empathetic utility for being agent *j* such that:

C1 there exists $\alpha \in \mathbb{R}_+ \setminus \{0\}$ and $\beta \in \mathbb{R}$ such that, for every $s \in S$, $U_{i,j}^{E}(s) = \alpha \times U_{j}(s) + \beta$.

Empathetic Preferences Definition Team Reasoning Game Model Social Ties Solution Concept Conclusion Remarks & Limitations

Modeling empathetic preferences

How to combine *i*'s empathetic preferences for every solution *s* behind the *veil of ignorance*?

 According to Harsanyi [Harsanyi,1986], *i* assigns (equal) probabilities to each event:

$$U_{i,J}^{H}(s) = rac{1}{|J|} \cdot \sum_{j \in Agt} U_{i,j}^{E}(s)$$

 According to Rawls [Rawls,1971], *i* is not able to assign probabilities:

$$U_{i,J}^R(s) = \min_{j \in J} U_{i,j}^E(s)$$

• Who is right?

- \Rightarrow Depends on context!
- \Rightarrow Theory of external enforcement [Binmore 2005]

10/39

Empathetic Preferences Definition Team Reasoning Game Model Social Ties Solution Concept Conclusion Remarks & Limitations

Modeling empathetic preferences

How to combine *i*'s empathetic preferences for every solution *s* behind the *veil of ignorance*?

 According to Harsanyi [Harsanyi,1986], *i* assigns (equal) probabilities to each event:

$$U_{i,J}^{H}(s) = rac{1}{|J|} \cdot \sum_{j \in Agt} U_{i,j}^{E}(s)$$

 According to Rawls [Rawls,1971], *i* is not able to assign probabilities:

$$U_{i,J}^{\mathcal{R}}(s) = \min_{j \in J} U_{i,j}^{\mathcal{E}}(s)$$

- Who is right?
 - \Rightarrow Depends on context!
 - \Rightarrow Theory of external enforcement [Binmore 2005]

Empathetic Preferences Definition Team Reasoning Game Model Social Ties Solution Concept Conclusion Remarks & Limitations

Modeling empathetic preferences

How to combine *i*'s empathetic preferences for every solution *s* behind the *veil of ignorance*?

 According to Harsanyi [Harsanyi,1986], *i* assigns (equal) probabilities to each event:

$$U_{i,J}^{H}(s) = \frac{1}{|J|} \cdot \sum_{j \in Agt} U_{i,j}^{E}(s)$$

 According to Rawls [Rawls,1971], *i* is not able to assign probabilities:

$$U_{i,J}^{\mathcal{R}}(s) = \min_{j \in J} U_{i,j}^{\mathcal{E}}(s)$$

- Who is right?
 - ⇒ Depends on context!
 - \Rightarrow Theory of external enforcement [Binmore,2005]

 mpathetic Preferences
 Definition

 Team Reasoning
 Game Mo

 Social Ties
 Solution (

 Conclusion
 Remarks

Definition Game Model Solution Concept Remarks & Limitations

Empathy Equilibrium

- Behind the veil of ignorance:
 - ⇒ Assumption that everybody shares the same empathetic preferences
 - \Rightarrow No need for strategic thinking!

Definition (Empathy Equilibrium)

 $s \in S$ is an empathy equilibrium in *EM* iff:

 $s \in argmax_{s' \in S}U_i^X(s')$ for every $i \in Agt$

where $U_i^X = U_{i,Agt}^H$ or $U_i^X = U_{i,Agt}^R$

 mpathetic Preferences
 Definition

 Team Reasoning
 Game Mo

 Social Ties
 Solution (

 Conclusion
 Remarks

Definition Game Model Solution Concept Remarks & Limitations

Empathy Equilibrium

- Behind the veil of ignorance:
 - ⇒ Assumption that everybody shares the same empathetic preferences
 - \Rightarrow No need for strategic thinking!

Definition (Empathy Equilibrium)

 $s \in S$ is an empathy equilibrium in *EM* iff:

$$s \in argmax_{s' \in S} U_i^X(s')$$
 for every $i \in Agt$

where $U_i^X = U_{i,Agt}^H$ or $U_i^X = U_{i,Agt}^R$

mpathetic Preferences Definition Team Reasoning Game Model Social Ties Solution Concept Conclusion Remarks & Limitatio

Empathy Equilibrium

Choose between x ("playing squash") and y ("playing tennis"):

Assuming indifference between being either Alice or Bob:

- x = empathy equilibrium à la Harsanyi
- y = empathy equilibrium à la Rawls

Definition Game Model Solution Concept Remarks & Limitations

Remarks & Limitations

Binmore's model of empathetic preferences:

- allows to explain cooperative behavior!
- o does not incorporate strategic reasoning!
 - \Rightarrow it cannot explain mutual defection in the PD game!
 - \Rightarrow it cannot model competing coalitions in larger games!
- does not allow for a clear quantification of empathy!
 - \Rightarrow How thick is the *veil of ignorance*?
 - \Rightarrow Nash equilibrium Vs. empathy equilibrium

mpathelic Preferences Definition Team Reasoning Game Model Social Ties Solution Concept Conclusion Remarks & Limitat

Formalizing games with group utility

Definition (Game with Group Utility)

- $m{G}' = \langle Agt, \{m{S}_i | i \in Agt\}, \{m{U}_{m{J}} | m{J} \in 2^{Agt*}\}
 angle$ where:
 - $Agt = \{1, \ldots, n\}$ is the set of agents;
 - S_i defines the set of strategies for agent *i*;
 - $U_J : \prod_{i \in Agt} S_i \to \mathbb{R}$ is a total payoff function mapping every strategy profile to some real number for some team J.

Examples of group utility functions U_J :

- pure utilitarianism: $U_J(s) = \sum_{i \in J} U_i(s)$
- the maximin principle: $U_J(s) = \min_{i \in J} U_i(s)$
- induced by aligned empathetic preferences:

• i.e.,
$$U_{i,k}^E = U_{i,k}^E$$
 for every $i, j, k \in Aga$

•
$$\Rightarrow U_J(s) = U_{i,J}^x(s)$$
 for some $i \in \mathcal{L}$

14/39

mpathetic Preferences Definition Team Reasoning Game Model Social Ties Solution Concept Conclusion Remarks & Limitati

Formalizing games with group utility

Definition (Game with Group Utility)

- $m{G}' = \langle Agt, \{m{S}_i | i \in Agt\}, \{m{U}_{m{J}} | m{J} \in 2^{Agt*}\}
 angle$ where:
 - $Agt = \{1, \ldots, n\}$ is the set of agents;
 - S_i defines the set of strategies for agent *i*;
 - $U_J : \prod_{i \in Agt} S_i \to \mathbb{R}$ is a total payoff function mapping every strategy profile to some real number for some team *J*.

Examples of group utility functions U_J :

- pure utilitarianism: $U_J(s) = \sum_{i \in J} U_i(s)$
- the maximin principle: $U_J(s) = \min_{i \in J} U_i(s)$
- induced by aligned empathetic preferences:

• i.e.,
$$U_{i,k}^E = U_{j,k}^E$$
 for every $i, j, k \in Ag_i$
• $\Rightarrow U_i(s) = U_{i,k}^X(s)$ for some $i \in J$

イロト 不得 トイヨト イヨト

Empathetic Preferences Tuomela's Theor Team Reasoning Sugden's Theory Social Ties Bacharach's The Conclusion Limitations

4 Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Empathetic Preferences Tuomela Team Reasoning Sugden' Social Ties Bachara Conclusion Limitatic

Tuomela's Theory Sugden's Theory Bacharach's Theory Limitations

Tuomela's theory of team reasoning

Tuomela's I-mode / we-mode distinction [Tuomela,2010]:

- *I-mode* = conceive the situation as a decision making problem for individual agents (reasoning as a private person)
 - plain l-mode = make a decision with the individual intention to maximize self-interest (cf., classical economic theory)
 - pro-group I-mode = make a decision with the individual intention to maximize the group utility (cf., theories of social preferences)
- we-mode = conceive the situation as a decision making problem for the group conceived as an agent
 - \Rightarrow collective intention!

Empathetic Preferences Tuomela's Team Reasoning Sugden's T Social Ties Bacharach Conclusion Limitations

Tuomela's Theory Sugden's Theory Bacharach's Theory Limitations

Tuomela's theory of team reasoning

Tuomela's I-mode / we-mode distinction [Tuomela,2010]:

- I-mode = conceive the situation as a decision making problem for individual agents (reasoning as a private person)
 - plain I-mode = make a decision with the individual intention to maximize self-interest (cf., classical economic theory)
 - pro-group I-mode = make a decision with the individual intention to maximize the group utility (cf., theories of social preferences)
- *we-mode* = conceive the situation as a decision making problem for the group conceived as an agent
 - \Rightarrow collective intention!

Empathetic Preferences Tuomela's Team Reasoning Sugden's T Social Ties Bacharach Conclusion Limitations

Tuomela's Theory Sugden's Theory Bacharach's Theory Limitations

Tuomela's theory of team reasoning

Tuomela's I-mode / we-mode distinction [Tuomela,2010]:

- I-mode = conceive the situation as a decision making problem for individual agents (reasoning as a private person)
 - plain I-mode = make a decision with the individual intention to maximize self-interest (cf., classical economic theory)
 - pro-group I-mode = make a decision with the individual intention to maximize the group utility (cf., theories of social preferences)
- we-mode = conceive the situation as a decision making problem for the group conceived as an agent
 - \Rightarrow collective intention!

uomela's Theory Sugden's Theory Bacharach's Theory imitations

Sugden's theory of team reasoning

According to [Sugden,2003,2007]:

Statement (Simple team reasoning)

If I believe that:

- I am a member of group J.
- It is common knowledge among all members of J that we all identify with J.
- It is common knowledge among all members of J that we all want U_J to be maximized.
- It is common knowledge among all members of J that solution s uniquely maximizes U_J.

Then I should choose my strategy in s.

uomela's Theory ugden's Theory acharach's Theory imitations

Bacharach's theory of team reasoning

Concept of unreliable team interaction [Bacharach, 1999]:

- ⇒ A game theoretic model of team reasoning!
- Agents "know" their own type of reasoning (e.g., *I-mode/we-mode*)
 - $\bullet \ \Rightarrow$ a psychological factor, prior to any rational choice
- Agents can be uncertain about others' types of reasoning!
- → Agents maximize their expected utility depending on their type

uomela's Theory ugden's Theory acharach's Theory imitations

Bacharach's theory of team reasoning

Definition (Unreliable Team Interaction)

 $UTI = \langle Agt, \{S_i | i \in Agt\}, \{U_J | J \in 2^{Agt*}\}, \{\Omega_i | i \in Agt\} \rangle$ where:

- $\langle Agt, \{S_i | i \in Agt\}, \{U_J | J \in 2^{Agt*}\} \rangle$ is a strategic game with group utility;
- Ω_i is a probability distribution over the set $T_i = \{J \in 2^{Agt*} | i \in J\}.$
- + Notion of a *team protocol* $\alpha \in \Delta$
 - $\Rightarrow \alpha$ specifies a strategy for each team $J \in 2^{Agt*}$
 - \neq strategy profile s in classical game theory

uomela's Theory ugden's Theory acharach's Theory imitations

Bacharach's theory of team reasoning

Definition (Unreliable Team Interaction)

 $UTI = \langle Agt, \{S_i | i \in Agt\}, \{U_J | J \in 2^{Agt*}\}, \{\Omega_i | i \in Agt\} \rangle$ where:

- $\langle Agt, \{S_i | i \in Agt\}, \{U_J | J \in 2^{Agt*}\} \rangle$ is a strategic game with group utility;
- Ω_i is a probability distribution over the set $T_i = \{J \in 2^{Agt*} | i \in J\}.$
- + Notion of a *team protocol* $\alpha \in \Delta$
 - $\Rightarrow \alpha$ specifies a strategy for each team $J \in 2^{Agt*}$
 - \neq strategy profile s in classical game theory

Empathetic Preferences Tuc Team Reasoning Sug Social Ties Ba Conclusion Lim

Tuomela's Theory Sugden's Theory Bacharach's Theory Limitations

Bacharach's theory of team reasoning

Expected value of protocol $\alpha \in \Delta$ for some team $J \in 2^{Agt*}$:

$$EV_J(\alpha) = \sum_{t \in T} \Omega(t) \cdot U_J(s_1^{\alpha,t}, \dots, s_n^{\alpha,t})$$

Definition (Uti Equilibrium)

A protocol α is an UTI equilibrium if and only if:

$$\forall J \in 2^{Agt*}, \forall \beta \in \Delta, EV_J(\beta_J \cdot \alpha_{-J}) \leq EV_J(\alpha_J \cdot \alpha_{-J})$$

- Equilibrium solution ⇔ no individual AND no team can increase expected value by unilaterally deviating
- \Rightarrow Equivalent to finding a Nash equilibrium in a transformed *n*-player game with $n = |2^{Agt*}|$

Fuomela's Theory Sugden's Theory Bacharach's Theory .imitations

Limitations to Bacharach's model

- Complexity of computing an equilibrium solution
- Interpretation of exogenous probability distribution Ω_i
 - e.g., intrinsic to game structure? the players? social ties?
- Interpretation of the group utility function
 - e.g., pure utilitarianism? maximin principle?
- Only binary types of reasoning (I-mode/we-mode)
 - ⇒ No gradual group identification (at best vacillations between modes)!

uomela's Theory Sugden's Theory Bacharach's Theory .imitations

Limitation to all theories of team reasoning

A counter-example to all theories of team reasoning:

- In *I-mode* \Rightarrow Bob will play A
- In we-mode \Rightarrow Bob will play B
 - Following either utilitarianism or the maximin principle
- \Rightarrow Bob will *never* play C (counter-intuitive!)

uomela's Theory sugden's Theory aacharach's Theory imitations

Limitation to all theories of team reasoning

A counter-example to all theories of team reasoning:

- In *I-mode* \Rightarrow Bob will play A
- In we-mode \Rightarrow Bob will play B
 - Following either utilitarianism or the maximin principle
- \Rightarrow Bob will *never* play C (counter-intuitive!)

Empathetic Preferences Definition of Social Ties Team Reasoning Social Ties Modeling Social Ties Illustration Conclusion Comparative Analysis

Outline

Team Reasoning

Conclusion

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ♪ 23/39 Empathetic Preferences Definition of Social Ties Team Reasoning Social Ties Social Ties Illustration Conclusion Comparative Analysis

Definition of social ties

- No formal definition so far!
- ⇒ friends, married couples, family relatives, colleagues, classmates, etc...
- Some psychological foundations:
 - Social features that define one's social identity
 - e.g., to identify as a student of Toulouse university, a supporter of Barcelona's soccer team, a Democrat, ...
- Some epistemic foundations
 - Minimal criterion: a social tie between i and j ⇔ i and j commonly believe that they share the same social features defining their social identities.

Empathetic Preferences Definition of Social Ties Team Reasoning Modeling Social Ties Social Ties Illustration Conclusion Comparative Analysis

Definition of social ties

- No formal definition so far!
- ⇒ friends, married couples, family relatives, colleagues, classmates, etc...
- Some psychological foundations:
 - Social features that define one's social identity
 - e.g., to identify as a student of Toulouse university, a supporter of Barcelona's soccer team, a Democrat, ...
- Some epistemic foundations
 - Minimal criterion: a social tie between i and j ⇔ i and j commonly believe that they share the same social features defining their social identities.

Empathetic Preferences Definition of Social Ties Team Reasoning Social Ties Social Ties Illustration Conclusion Comparative Analysis

Definition of social ties

- No formal definition so far!
- ⇒ friends, married couples, family relatives, colleagues, classmates, etc...
- Some psychological foundations:
 - Social features that define one's social identity
 - e.g., to identify as a student of Toulouse university, a supporter of Barcelona's soccer team, a Democrat, ...
- Some epistemic foundations
 - Minimal criterion: a social tie between *i* and *j* ⇔ *i* and *j* commonly believe that they share the same social features defining their social identities.

Empathetic Preferences Definition of Social Ties Team Reasoning Modeling Social Ties Social Ties Illustration Conclusion Comparative Analysis

Definition of social ties

How to quantify the social tie between *i* and *j*?

- Quantity and importance of shared social features that define both *i* and *j*'s social identities
 - How many social features *i* and *j* share?
 - Are shared social features as important for *i* as for *j*?
- Quantity and quality of past interactions between i and j
 - How often *i* and *j* had meaningful interactions with each other?
 - e.g., exchanging ideas, opinions, sharing positive emotions,

Empathetic Preferences Definition of Social Ties Team Reasoning Modeling Social Ties Social Ties Illustration Conclusion Comparative Analysis

Definition of social ties

How to quantify the social tie between *i* and *j*?

- Quantity and importance of shared social features that define both *i* and *j*'s social identities
 - How many social features *i* and *j* share?
 - Are shared social features as important for *i* as for *j*?
- Quantity and quality of past interactions between *i* and *j*
 - How often *i* and *j* had meaningful interactions with each other?
 - e.g., exchanging ideas, opinions, sharing positive emotions,
 - ...

Empathetic Preferences Definition of Social Ties Team Reasoning Social Ties Social Ties Illustration Conclusion Comparative Analysis

Modeling social ties

Definition (Social Ties Game)

 $ST = \langle Agt, \{S_i | i \in Agt\}, \{U_J | J \in 2^{Agt*}\}, \{k_i | i \in Agt\} \rangle$ where:

- $\langle Agt, \{S_i | i \in Agt\}, \{U_J | J \in 2^{Agt*}\} \rangle$ is a strategic game with group utility;
- Every k_i is a total function $k_i : 2^{Agt \setminus \{i\}} \to [0, 1]$, such that:

C3
$$\sum_{J \in 2^{Agt \setminus \{i\}}} k_i(J) = 1$$

C4 if $i, j \in Agt$, $i \neq j$, and $J \subseteq Agt \setminus \{i, j\}$,
then $k_i(J \cup \{j\}) = k_j(J \cup \{i\})$

Intuitions:

- $k_i(J)$ = agent *i*'s social tie with group J
- C3 \Rightarrow a distribution of social ties!
- C4 ⇒ social ties are bilateral!

イロト イポト イヨト イヨト

Empathetic Preferences Definition of Social Ties Team Reasoning Modeling Social Ties Social Ties Illustration Conclusion Comparative Analysis

Modeling social ties

Assumptions:

- Social ties affect social preferences!
 - \Rightarrow individual intentionality (\neq team reasoning)
- Inspired by Binmore's theory of empathetic preferences!
 - social ties = measure of thickness of the veil of ignorance

Definition (Social Ties Utility)

Given a social ties game *ST*, for every strategy profile $s \in S$, the social ties utility function of player *i* is given by:

$$U_i^{ST}(s) = \sum_{J \subseteq Agt \setminus \{i\}} k(J \cup \{i\}) \cdot \max_{s'_J \in S_J} U_{J \cup \{i\}}(s_{-J}, s'_J)$$

Intuition:

● ⇒ the more *i* is tied with *J*, the more *J*'s welfare matters in *i*'s preferences

Empathetic Preferences Definition of Social Ties Team Reasoning Social Ties Illustration Conclusion Comparative Analysis

Modeling social ties

Assumptions:

- Social ties affect social preferences!
 - \Rightarrow individual intentionality (\neq team reasoning)
- Inspired by Binmore's theory of empathetic preferences!
 - social ties = measure of thickness of the veil of ignorance

Definition (Social Ties Utility)

Given a social ties game *ST*, for every strategy profile $s \in S$, the social ties utility function of player *i* is given by:

$$U_i^{ST}(s) = \sum_{J \subseteq Agt \setminus \{i\}} k(J \cup \{i\}) \cdot \max_{s'_J \in S_J} U_{J \cup \{i\}}(s_{-J}, s'_J)$$

Intuition:

• \Rightarrow the more *i* is tied with *J*, the more *J*'s welfare matters in *i*'s preferences Empathetic Preferences Definition of Social Ties Team Reasoning Modeling Social Ties Social Ties Illustration Conclusion Comparative Analysis

Illustration: Social Ties in 2-player Games

 \Rightarrow A simplified utility function:

Given a social ties game ST with $Agt = \{i, j\}$, for every $s \in S$:

$$U_i^{ST}(\mathbf{s}) = (1 - k_{ij}) \cdot U_i(\mathbf{s}) + k_{ij} \cdot \max_{s'_j \in S_j} U_{\{i,j\}}(\mathbf{s}_i, s'_j)$$

(where $k_{ij} = k_i(\{j\})$) If $k_{ij} = 1$:

ullet \Rightarrow assumes partner would "do the right thing for the group"

Individual decision problem!

Empathetic Preferences Definition of Social Ties Team Reasoning Modeling Social Ties Social Ties Illustration Conclusion Comparative Analysis

Illustration: Social Ties in 2-player Games

 \Rightarrow Transformation of utilities (assuming $st_{ij} = 1$):

29/39

Definition of Social Ties Modeling Social Ties Illustration Comparative Analysis

Relationship with empathetic preferences

Theorem

Given:

- a game EM with aligned empathetic preferences (i.e., $U_{i,k}^E = U_{j,k}^E$ for every $i, j, k \in Agt$)
- the strategic game G^{em} induced by EM (i.e., U_J(s) = U^x_{i,J}(s) for some i ∈ Agt)
- the social ties game ST = ⟨G^{em}, {k_i | i ∈ Agt}⟩ s.t. k_i(Agt\{i}) = 1 for every i ∈ Agt

Finding an empathy equilibrium in EM ⇔ Finding a Nash equilibrium in the game induced by ST.

Definition of Social Ties Modeling Social Ties Illustration Comparative Analysis

Relationship with Bacharach's team reasoning

Definition (Binary Games)

A binary unreliable team interaction *BUTI* is a structure $UTI = \langle Agt, \{S_i | i \in Agt\}, \{U_J | J \in 2^{Agt*}\}, \{\Omega_i | i \in Agt\} \rangle$ where there exists $t \in T$ such that:

• for every
$$i \in Agt$$
, $\Omega_i(t_i) = 1$;

A binary social ties game *BST* is a game $GI = \langle Agt, \{S_i | i \in Agt\}, \{U_J | J \in 2^{Agt*}\}, \{k_i | i \in Agt\} \rangle$ where: • for every $i \in Agt$ and every $J \subset Agt, k_i(J) \in \{0, 1\}$.

Definition of Social Ties Modeling Social Ties Illustration Comparative Analysis

Relationship with Bacharach's team reasoning

Theorem

Given:

- a strategic game with group utility G' with |Agt| = 2,
- a binary social ties game $BST = \langle G', \{k_i | i \in Agt\} \rangle$,
- a binary UTI structure $BUTI = \langle G', \{\Omega_i | i \in Agt\} \rangle$,

if $k_i(Agt \setminus \{i\}) = \Omega_i(Agt)$ for every $i \in J$, then:

Finding a unique Nash equilibrium in game induced by BST

Finding a unique UTI equilibrium in BUTI

Definition of Social Ties Modeling Social Ties Illustration Comparative Analysis

Relationship with Bacharach's team reasoning

Theorem

Given:

- a strategic game with group utility G' with |Agt| > 2,
- a binary social ties game $BST = \langle G', \{k_i | i \in Agt\} \rangle$,
- a binary UTI structure $BUTI = \langle G', \{\Omega_i | i \in Agt\} \rangle$,

if $k_i(J \setminus \{i\}) = \Omega_i(J)$ for every $J \in 2^{Agt*}$ and $i \in J$, then:

Finding a unique Nash equilibrium in game induced by BST ⇒ Finding a unique LITL agaiitheime in DUTL

Finding a unique UTI equilibrium in BUTI

Definition of Social Ties Modeling Social Ties Illustration Comparative Analysis

Relationship with Bacharach's team reasoning

Theorem

Given:

- a strategic game with group utility G' with |Agt| > 2,
- a binary social ties game $BST = \langle G', \{k_i | i \in Agt\} \rangle$,
- a binary UTI structure $BUTI = \langle G', \{\Omega_i | i \in Agt\} \rangle$,

if $k_i(J \setminus \{i\}) = \Omega_i(J)$ for every $J \in 2^{Agt*}$ and $i \in J$, then:

Finding a unique UTI equilibrium in BUTI

⇒ Finding a unique Nash equilibrium in game induced by BST

 \Rightarrow cf., games with ambiguous group intentions

Empathetic Preferences Definition of Social Tie Team Reasoning Social Ties Social Ties Illustration Conclusion Comparative Analysis

Relationship with Bacharach's team reasoning

Different predictions in a 2-player game G':

- Assumption: group utility function = pure utilitarianism or maximin principle
- Can Bob play C?
 - According to any structures $UTI = \langle G', \{\Omega_i | i \in Agt\} \rangle$: No!
 - According to some game $ST = \langle G', \{k_i | i \in Agt\} \rangle$: Yes!

Empathetic Preferences Definition of Social Ties Team Reasoning Social Ties Social Ties Illustration Conclusion Comparative Analysis

Relationship with Bacharach's team reasoning

Different predictions in a 2-player game G':

Assumption: group utility function = pure utilitarianism

- Can Bob play A?
 - According to any game $ST = \langle G', \{k_i | i \in Agt\} \rangle$: No!
 - According to some structure $UTI = \langle G', \{\Omega_i | i \in Agt\} \rangle$: Yes!

Outline

Team Reasoning

3 Social Ties

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ 3 ○ ○ 37/39

Conclusion

- Theories of empathetic preferences and team reasoning:
 - \Rightarrow can explain co-operation
 - $\bullet \Rightarrow$ limited for modeling complex collective behavior!
- Our theory of social ties:
 - \Rightarrow simple and intuitive
 - ullet \Rightarrow an alternative theory of social preferences
 - $\bullet \Rightarrow$ collective reasoning based on individual intentionality
 - ullet \Rightarrow fills the gap between defection and cooperation
 - ⇒ can model competing coalitions (whose intersection may be non-empty)

Conclusion

Future work:

- interpreting social ties towards groups in terms of social ties between individuals
- Experimental study to distinguish models of social ties Vs. team reasoning

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

39/39

- Collective reasoning in sequential games
- Epistemic analysis of social ties
- Dynamics of social ties & group formation
- Consider other solution concepts in social ties game
- . . .