Cooperative Games for the Interpretation of Machine Learning Models
le 14 octobre 2025
12h45
Manufacture des Tabacs Salle MH003
Marouane Il Idrissi, Université du Québec à Montréal (UQAM) / Université Laval
Abstract: Cooperative game theory has become a cornerstone of post-hoc interpretability in machine learning, largely through the use of Shapley values. Yet, despite their widespread adoption, Shapley-based methods often rest on axiomatic justifications whose relevance to feature attribution remains debatable. During this presentation, we will revisit cooperative game theory from an interpretability perspective and argue for a more principled use of its tools. Through two broad families of allocations, we will provide an intuitive interpretation of the Shapley values, offer a blueprint for defining more intricate interpretation tools, and derive statistically sound estimates to solve the exponential computational burden. Finally, we will discuss the theoretical challenges surrounding the choice of value function.
En appuyant sur le bouton "j'accepte" vous nous autorisez à déposer des cookies afin de mesurer l'audience de notre site. Ces données sont à notre seul usage et ne sont pas communiquées. Consultez notre politique relative aux cookies